Update on 4π control system

Fred Gray – University of California, Berkeley KamLAND collaboration meeting, Gatlinburg, TN – April 2-4, 2005

- Reminder of control system design
 - Concept is becoming reality!
- Summary of development and testing
- Remaining tasks

Multiple layers of protection

...against mistakes that might damage the detector:

- 1. Written deployment protocol.
- 2. Operator required to move in small steps.
- 3. Pre-verification of commanded motion.
- 4. Continuous cross-checks between various position measurements.
- 5. Immediate stop if measured position goes outside allowed region.

Control hardware

Stages of deployment

- ▶ During assembly of pole: use external manual controller (no constraints).
- Tare procedure with top segment held in pin block.
- During calibration, until pole withdrawal begins, all constraints are enforced:
 - All position measurements in agreement:
 - Primary: cable lengths from encoder pulley
 - Cable lengths from motor encoder
 - Instrumentation unit pressure sensors
 - Instrumentation unit accelerometers (tilt sensors)
 - Physics model indicates all components of system in bounds.
 - Slack in lower cable does not exceed specified value.
- During pole disassembly, shift back to manual controller.

Tare procedure

▶ While top pole segment is held by pin block, pull both cables taut.

Basic tests

- ightharpoonup Reproducibility of cable lengths within \sim 1 mm
- Cable can be stopped by hand when motor torque limit is set properly.
- ▶ Motor-encoder interlock stops system if encoder feedback disappears.

Survey: angles

- Theodolite with digital readout used to measure coordinates of pivot block and cable attachment points.
- ▶ Angles θ_{pole} , θ_1 , θ_2 computed.

Survey: within a few degrees

	$ heta_{pole}$	[deg]	$ heta_1$	[deg]	θ_2	[deg]
	Control	Survey	Control	Survey	Control	Survey
1	80.3	85.3	8.4	3.4	2.2	1.0
2	65.0	66.8	21.7	19.9	5.9	5.1
3	50.0	51.2	34.2	31.9	10.2	9.2
4	35.0	35.6	45.7	43.2	16.3	14.9
5	20.0	18.0	55.2	48.7	25.6	24.0
6	21.3	19.3	54.5	47.8	24.6	22.9
7	5.0	1.4	60.6	55.1	41.0	39.0
8	-0.1	-1.3	60.9	57.8	47.9	45.6
9	-5.0	-5.9	60.6	55.1	55.4	51.1

New z-axis mode interface

4π mode interface

Remaining tasks

- ► Integrate instrumentation units: add cross-checks between cable length and accelerometers/pressure sensors.
 - Currently solving electrical problems.
- Retension cables and recalibrate motor vs. pulley encoders.
- ▶ Re-enable the cross-checks that have been disabled for testing of partial system.
- Repeat survey measurements.
- Insert real detector geometry.
- Provide easier access to history information (partially done: logging to database as well as text file).